Task:

A train at rest starts moving with uniform acceleration, keeps moving for 2 min . It reaches 48 km / h after 5 min of its uniform retardation and stops after 3 min . How much distance it covered?

Solution:

Given:

$t_{a c c}=2 \min =\frac{1}{30} h$
$t_{\text {ret }}=5 \min =\frac{1}{12} h$
$t_{\text {stop }}=3 \min =\frac{1}{20} h$
$\dot{s}_{2}\left(t_{\text {ret }}\right)=48 \mathrm{~km} / \mathrm{h}$
$\dot{s}_{2}\left(t_{\text {ret }}+t_{\text {stop }}\right)=0 \mathrm{~km} / \mathrm{h}$
$s_{1}(t)=\frac{a_{1} \cdot t^{2}}{2}$
$s_{2}\left(t_{1}\right)=\frac{a_{2} \cdot t_{1}{ }^{2}}{2}+\dot{s}_{1}\left(t_{a c c}\right) \cdot t_{1}$
$s_{\text {total }}=s_{1}\left(t_{\text {acc }}\right)+s_{2}\left(t_{\text {ret }}+t_{\text {stop }}\right)$
$s_{1}\left(t_{a c c}\right)=\frac{a_{1} \cdot t_{a c c}{ }^{2}}{2}$
$\dot{s}_{1}(t)=a_{1} \cdot t$
$\dot{s}_{1}\left(t_{a c c}\right)=a_{1} \cdot t_{a c c}$
$\dot{s}_{2}\left(t_{1}\right)=a_{2} \cdot t_{1}+\dot{s}_{1}\left(t_{a c c}\right)=a_{2} \cdot t_{1}+a_{1} \cdot t_{a c c}$
$\dot{s}_{2}\left(t_{r e t}\right)=a_{2} \cdot t_{r e t}+a_{1} \cdot t_{\text {acc }}=48 \mathrm{~km} / \mathrm{h}$
$\dot{s}_{2}\left(t_{\text {ret }}+t_{\text {stop }}\right)=a_{2} \cdot\left(t_{\text {ret }}+t_{\text {stop }}\right)+a_{1} \cdot t_{\text {acc }}=0 \mathrm{~km} / \mathrm{h}$
$a_{1}=3840 \mathrm{~km} / \mathrm{h}^{2}, a_{2}=-960 \mathrm{~km} / \mathrm{h}^{2}$;
$s_{\text {total }}=\frac{a_{1} \cdot t_{\text {acc }}{ }^{2}}{2}+\frac{a_{2} \cdot\left(t_{\text {ret }}+t_{\text {stop }}\right)^{2}}{2}+a_{1} \cdot t_{\text {acc }} \cdot\left(t_{\text {ret }}+t_{\text {stop }}\right)=\frac{32}{3} \mathrm{~km}$

Answer:

The train covered $\frac{32}{3} \mathrm{~km}$

