

Question#20151

a steel ball bearing is 4cm at 20°C. a bronze plate has a hole in it that is 3.9cm in diameter at 20°C. what common temperature must they have so the ball just squeezes through the hole ?.

Solution:

Let:

$$D_1 = 4 \text{ cm}$$

$$D_2 = 3.9 \text{ cm}$$

$$t_0 = 20 \text{ } ^\circ\text{C}$$

$$t - ?$$

$$D_1^t = D_1 + D_1 \alpha_{steel} (t - t_0)$$

$$D_2^t = D_2 + D_2 \alpha_{bronze} (t - t_0)$$

Were:

$\alpha_{steel} = 11 * 10^{-6} \text{ } ^\circ\text{C}^{-1}$ Is the coefficient of thermal expansion of the steel.

$\alpha_{bronze} = 18 * 10^{-6} \text{ } ^\circ\text{C}^{-1}$ Is the coefficient of thermal expansion of the bronze.

Such as:

$$D_1^t = D_2^t$$

$$D_1 + D_1 \alpha_{steel} (t - t_0) = D_2 + D_2 \alpha_{bronze} (t - t_0)$$

$$t = \frac{D_1(t_0 \alpha_{steel} - 1) - D_2(t_0 \alpha_{bronze} - 1)}{D_1 \alpha_{steel} - D_2 \alpha_{bronze}}$$

$$t = \frac{4(20 * 11 * 10^{-6} - 1) - 3.9(20 * 18 * 10^{-6} - 1)}{4 * 11 * 10^{-6} - 3.9 * 18 * 10^{-6}} = 3837 \text{ } ^\circ\text{C}$$

Answer: 3837 $^\circ\text{C}$.