Problem:

Starting at rest $\mathrm{t}=0, \mathrm{a}$ wheel undergoes a constant angular acceleration. when $\mathrm{t}=2.33 \mathrm{sec}$, the angular velocity of a wheel is $4.96 \mathrm{rad} / \mathrm{s}$.the acceleration continues until $\mathrm{t}=23.0 \mathrm{~s}$, when it abruptly ceases. Through what angle does the wheel rotate in the interval $t=0$ to $t=46.0 \mathrm{~s}$?

Solution:

According to kinematics of angular movement:
$\beta=\frac{\omega_{1}}{t_{1}}=\frac{4.96}{2.33}=2.13\left[\frac{\mathrm{rad}}{\mathrm{s}^{2}}\right]$
$\omega_{2}=\beta t_{2}=\omega_{1} \frac{t_{2}}{t_{1}}=4.96 * \frac{23}{2.33}=49[\mathrm{rad} / \mathrm{s}]$
$\varphi=\varphi_{t_{2}}+\omega_{2}\left(t_{3}-t_{2}\right)=\frac{\beta t_{2}{ }^{2}}{2}+\omega_{2}\left(t_{3}-t_{2}\right)=\frac{\omega_{1}}{t_{1}} * \frac{t_{2}{ }^{2}}{2}+\omega_{2}\left(t_{3}-t_{2}\right)$
$=2.13 * \frac{23^{2}}{2}+49 *(46-23)=1690[\mathrm{rad}]$

Where β - angular acceleration;
$\omega_{1}=4.96 \mathrm{rad} / \mathrm{s}-$ angular speed at time $t_{1}=2.33 \mathrm{~s} ;$
$\omega_{1}-$ angular speed at time $t_{2}=23 \mathrm{~s} ;$
$t_{3}=46 \mathrm{~s}-$ stop time;
φ - whole angle, that wheel rotate through time t_{3};
$\varphi_{t_{z}}-$ angle, that wheel rotate through time $t_{2} ;$
Answer: $\varphi=1690[\mathrm{rad}]$.

