

Problem:

Starting at rest $t=0$, a wheel undergoes a constant angular acceleration. When $t=2.33\text{ sec}$, the angular velocity of a wheel is 4.96 rad/s . The acceleration continues until $t=23.0\text{ s}$, when it abruptly ceases. Through what angle does the wheel rotate in the interval $t=0$ to $t=46.0\text{ s}$?

Solution:

According to kinematics of angular movement:

$$\beta = \frac{\omega_1}{t_1} = \frac{4.96}{2.33} = 2.13 \left[\frac{\text{rad}}{\text{s}^2} \right]$$

$$\omega_2 = \beta t_2 = \omega_1 \frac{t_2}{t_1} = 4.96 * \frac{23}{2.33} = 49 \left[\text{rad/s} \right]$$

$$\begin{aligned} \varphi = \varphi_{t_2} + \omega_2(t_3 - t_2) &= \frac{\beta t_2^2}{2} + \omega_2(t_3 - t_2) = \frac{\omega_1}{t_1} * \frac{t_2^2}{2} + \omega_2(t_3 - t_2) \\ &= 2.13 * \frac{23^2}{2} + 49 * (46 - 23) = 1690 \left[\text{rad} \right] \end{aligned}$$

Where β – angular acceleration;

$\omega_1 = 4.96 \text{ rad/s}$ – angular speed at time $t_1 = 2.33 \text{ s}$;

ω_1 – angular speed at time $t_2 = 23 \text{ s}$;

$t_3 = 46 \text{ s}$ – stop time;

φ – whole angle, that wheel rotate through time t_3 ;

φ_{t_2} – angle, that wheel rotate through time t_2 ;

Answer: $\varphi = 1690 \text{ [rad]}$.