Question

Given:
$v_{1}=36 \frac{\mathrm{~km}}{\mathrm{~h}}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{2}=54 \frac{\mathrm{~km}}{\mathrm{~h}}=15 \frac{\mathrm{~m}}{\mathrm{~s}}$
$t=6 \mathrm{~s}$
Need to find: Length of the second train.

Solution:

The passengers of the first train see that the second train moving with the velocity which is equal to the sum of the first and second trains' velocities: $v=v_{1}+v_{2}$. Than the length of the second train is $L_{2}=v \cdot t=\left(v_{1}+v_{2}\right) \cdot t=(10+15) \cdot 6=150 \mathrm{~m}$.

Answer: the length of the second train is 150 meters.

