

what is the dimension formula of modulus of rigidity?

Answer:

In materials science, shear modulus or modulus of rigidity, denoted by G , or sometimes S or μ , is defined as the ratio of shear stress to the shear strain:

$$G = \frac{\tau_{xy}}{\gamma_{xy}} = \frac{F/A}{\Delta x/l} = \frac{Fl}{A\Delta x}$$

where

$$\tau_{xy} = \frac{F}{A} = \text{shear stress};$$

F is the force which acts,

A is the area on which the force acts

$$\gamma_{xy} = \frac{\Delta x}{l} = \tan\theta = \text{shear strain}.$$

Δx is the transverse displacement

l is the initial length

In SI Δx and l are in units of length $[L]$

Force F is measured in Newton $=[MLT^{-2}]$

Area in in units of square length $[L^2]$

Thus, formula for modulus of rigidity become:

$$G = \frac{Fl}{A\Delta x} = \frac{[MLT^{-2}][L]}{[L^2][L]} = [ML^{-1}T^{-2}]$$

Answer: $[ML^{-1}T^{-2}]$