The period, T, of rotational motion is the time required for one complete revolution, or the time for the object to rotate through $2 \pi \mathrm{rad}$. Starting with angular displacement = average angular speed time interval, show that $T=2 \pi * \frac{r}{v}$

Solution:

angular displacement = average angular speed time interval:

$$
\phi=\omega * t
$$

For complete rotation:

$$
\begin{gathered}
t=T \\
\phi=2 \pi \mathrm{rad}
\end{gathered}
$$

Thus

$$
2 \pi=\omega * T
$$

Angular speed related to linear speed as:

$$
\omega=\frac{v}{r}
$$

So:

$$
2 \pi=\frac{v}{r} * T
$$

Finally:

$$
T=\frac{2 \pi r}{v}
$$

