. How much heat must a refrigerator remove from 100 g of water at $25^{\circ} \mathrm{C}$ to convert it to ice at $0^{\circ} \mathrm{C}$? (Specific heat of water $=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$ and heat of fusion of ice $=80 \mathrm{cal} / \mathrm{g}$ at $0^{\circ} \mathrm{C}$)

Solution:

Let:
$m=100 \mathrm{~g}$
$T_{2}=0^{\circ} \mathrm{C}$
$T_{1}=25^{\circ} \mathrm{C}$
$c=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$\lambda=80 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$Q-$?
$Q=Q_{1}+Q_{2}$, were: $Q_{1}-$ heat of cooling water from $25^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, Q_{2}-$ heat of freezing
$Q=m c\left(T_{1}-T_{2}\right)+\lambda m=m\left(c\left(T_{1}-T_{2}\right)+\lambda\right)$
$Q=100(1 * 25+80)=10500 \mathrm{cal}$
Answer: 10500 kal . Or 10.5 Kcal .

