Question\#19424

A 1 kg wooden block hanging from a 1 meter rope is struck by a 10 g bullet moving horizontally is observed to rise 5 cm . Assuming the bullet is lodged within the block, what must have been the speed of the bullet initially?

Solution:

Let:
$m_{1}=1 \mathrm{~kg}$
$m_{2}=10 \mathrm{~g}=0.01 \mathrm{~kg}$
$H=5 \mathrm{~cm}=0.05 \mathrm{~m}$
$v-$?

The kinetic energy of a bullet was transformed to the sum of potential energy the block and the bullet.

$$
\begin{aligned}
& E k_{\text {bullet }}=E p_{\text {bullet }}+E p_{\text {block }} \\
& \frac{1}{2} m_{2} v^{2}=m_{2} g H+m_{1} g H, g=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
& \boldsymbol{v}=\sqrt{\frac{2 g H\left(m_{2}+m_{1}\right)}{m_{2}}} \\
& \boldsymbol{v}=\sqrt{\frac{2 * 9.8 * 0.05(0.01+1)}{0.01}}=9.95 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Answer: $9.95 \mathrm{~m} / \mathrm{s}$.

