1. A projectile is fired at an upward angle of 45° from the top of a 233 m cliff with a speed of $192 \mathrm{~m} / \mathrm{s}$. What will be its speed when it strikes the ground below?

Solution.

Given: $\theta=45^{\circ}, h_{0}=939 \mathrm{~m}, \mathrm{~h}=233 \mathrm{~m}, v=192 \frac{\mathrm{~m}}{\mathrm{~s}}$,
Find: $v_{1}-$?
$v_{x}=$ const $=v \cdot \cos 45^{\circ}=192 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{\sqrt{2}}{2}=135.765 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{y_{0}}=v \cdot \sin 45^{\circ}=192 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \frac{\sqrt{2}}{2}=135.765 \frac{\mathrm{~m}}{\mathrm{~s}}$
$h_{0}=\frac{v_{y_{0}}{ }^{2}}{2 g}=\frac{v_{y_{0}}{ }^{2}}{2 g}=939 \mathrm{~m}$,
$h_{0}+h=\frac{v_{y_{1}}{ }^{2}}{2 g}, v_{y_{1}}=\sqrt{2 g \cdot\left(h_{0}+h\right)}=\left(151.640 \frac{\mathrm{~m}}{\mathrm{~s}}\right)$,
$v_{1}=\sqrt{v_{y_{1}}{ }^{2}+v_{y_{0}}{ }^{2}}=\sqrt{\left(151.640 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+\left(135.765 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}=203.536 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer:

$v_{1}=203.536 \frac{\mathrm{~m}}{\mathrm{~s}}$

