Question 19160

It is given, that $S=25 \mathrm{~cm}=0.25 m=v_{0} t_{s}-\frac{a t_{s}^{2}}{2}$, where $\quad t_{s}$ denotes the time for which the object moved until stop. Also, for velocity, $v=v_{0}-a t$, and for stop time $0=v_{0}-a t_{s} \Rightarrow t_{s}=\frac{v_{0}}{a}$. Plugging this formula into formula for S , obtain: $t_{s}=2 \frac{S}{v_{0}}=0.005 \mathrm{~s}$. Hence, the acceleration is $|a|=\frac{v_{0}}{t_{s}}=\frac{100 \mathrm{~m} / \mathrm{s}}{0.005 \mathrm{~s}}=20000 \mathrm{~m} / \mathrm{s}^{2} \quad$ (actually this acceleration is negative, but one needs the absolute value only). Hence, $\quad|F|=m|a|=0.005 \mathrm{~kg} \cdot 20000 \mathrm{~m} / \mathrm{s}=100 \mathrm{~N}$.

