Question 19160

It is given, that $S=25\,cm=0.25\,m=v_0t_s-\frac{a\,t_s^2}{2}$, where t_s denotes the time for which the object moved until stop. Also, for velocity, $v=v_0-a\,t$, and for stop time $0=v_0-a\,t_s\Rightarrow t_s=\frac{v_0}{a}$. Plugging this formula into formula for S, obtain: $t_s=2\frac{S}{v_0}=0.005\,s$. Hence, the acceleration is $|a|=\frac{v_0}{t_s}=\frac{100\,m/s}{0.005\,s}=20\,000\,m/s^2$ (actually this acceleration is negative, but one needs the absolute value only). Hence, $|F|=m|a|=0.005\,kg\cdot20000\,m/s=100\,N$.