a certain athlete consistently throws a javelin at a speed $25 \mathrm{~m} / \mathrm{s}$.what is her best distance?on one occasion the athlete released the javelin poorly, and achieved only one half of his distance.at what elevation angle did she release the javelin

Solution:
The best distance is if elevation angle equal to 45°

The distance is:
$S=v_{x} t$ were t - time of flight of a javelin, v_{x} - the horizontal component of velocity.
$v_{x}=v \cos \alpha$, were $\alpha-$ the elevatin angle
Such as the javelin move with by gravity force:
$v_{y}=g t, \quad t=\frac{v_{y}}{g}$ were $v_{y}-$ vertical component of velocity, $g-$ the gravity acceleration.
$v_{y}=v \sin \alpha$
$t=2 \frac{v \sin \alpha}{g}$
$S=2 \frac{v^{2} \sin \alpha \cos \alpha}{g}=\frac{v^{2} \sin 2 \alpha}{g}$
$S=\frac{25^{2} \sin \left(2 * 45^{\circ}\right)}{9.8}=63.78 \mathrm{~m}$
If the distance is a half of S, such as $\sin \left(2^{*} 45^{\circ}\right)=\sin 90^{\circ}=1$, the angle will be:
$\sin \alpha=0,5$
$\alpha=\arcsin 0.5=30^{\circ}$
Answer: distance is: 63.78 m , angle is: 30°

