## Question

The whole energy of a roller coaster (potential and kinetic) is:

$$
E=E_{\text {potential }}+E_{\text {kinetic }}=m \cdot\left(g h+\frac{v^{2}}{2}\right)
$$

At the beginning of the motion: $h=40 \mathrm{~m}$ and $v=15 \mathrm{~m} \cdot \mathrm{~s}^{-1}$. So, we will have:

$$
E_{1}=E_{\text {potential }}+E_{\text {kinetic }}=m \cdot\left(9.8 \cdot 40+\frac{15^{2}}{2}\right)=504.5 \cdot \mathrm{~m}
$$

At the moment when the roller coaster at a height of 5 meters above the ground we will have:

$$
E_{2}=E_{\text {potential }}+E_{\text {kinetic }}=m \cdot\left(9.8 \cdot 5+\frac{v^{2}}{2}\right)=E_{1}=504.5 \cdot \mathrm{~m} .
$$

So, we can find the velocity in this case:

$$
\begin{aligned}
& E_{2}=m \cdot\left(9.8 \cdot 5+\frac{v^{2}}{2}\right)=504.5 \cdot m \Rightarrow 9.8 \cdot 5+\frac{v^{2}}{2}=504.5 \Rightarrow \\
& \Rightarrow \frac{v^{2}}{2}=504.5-49=455.5 \Rightarrow v=\sqrt{2 \cdot 455.5}=30.18 \mathrm{~m} \cdot \mathrm{~s}^{-1} .
\end{aligned}
$$

Answer: $30.18 \mathrm{~m} \cdot \mathrm{~s}^{-1}$.

