A car weighing 1000 kg and travelling at $30 \mathrm{~m} / \mathrm{s}$ stops at a distance of 50 m decelerating uniformly. What is the force exerted by the brakes and what is the work done by the brakes?

Solution:
Let:
$m=1000 \mathrm{~kg}$
$v=30 \mathrm{~m} / \mathrm{s}$
$S=50 \mathrm{~m}$
$F-$?
According to the second Newton's law:
$\boldsymbol{F}=\boldsymbol{m} \boldsymbol{a}$, were $\mathrm{a}-\mathrm{acceleration}$
$v=a t, t=\frac{v}{a}, S=\frac{1}{2} a t^{2}$
$S=\frac{1}{2} \frac{v^{2}}{a}$
$a=\frac{v^{2}}{2 S}$
$F=\frac{m v^{2}}{2 S}$
$F=\frac{1000 * 30^{2}}{2 * 50}=9000 \mathrm{~N}$
Answer: 9000 N.

