A 20 kg box is initially sliding across the floor at $10 \mathrm{~m} / \mathrm{s}$. If the force of friction on the box is 50 N , how far will the box slide before coming to a stop?

Solution:

Let:
$m=20 \mathrm{~kg}$
$v_{0}=10 \mathrm{~m} / \mathrm{s}$
$F=50 N$
$S-$?
$S=v_{0} t-\frac{1}{2} a t^{2}$, were $t-$ time to a stop
Such as $v=a t, t=\frac{v}{a}$
$S=\frac{v_{0}{ }^{2}}{a}-\frac{1}{2} \frac{v_{0}^{2}}{a}=\frac{1}{2} \frac{v_{0}^{2}}{a}$
According to the second Newton's law:

$$
\begin{aligned}
& a=\frac{F}{m} \\
& S=\frac{1}{2} \frac{m v_{0}^{2}}{F} \\
& S=\frac{1}{2} \frac{20 * 10^{2}}{50}=2 m
\end{aligned}
$$

Answer: 2 m.

