Question 18991

According to $2^{\text {nd }}$ Newton's law, the acceleration is $a=\frac{F}{m}=\frac{7}{3} \mathrm{~m} / \mathrm{s}^{2}$. From the given distance, solve for time: $S=v_{0} t+\frac{a t^{2}}{2}=120 ; 120=\frac{100}{9} t+\frac{7}{6} t^{2} \Rightarrow t \approx 6.44 \mathrm{~s}$ (Here we converted the initial velocity from km / s into m / s). Plugging this time into the law of change of velocity $v=v_{0}+a t$, obtain $v=\frac{100}{9}+\frac{7}{6} \cdot 6.44 \approx 18.62 \mathrm{~m} / \mathrm{s} \approx 67 \mathrm{~km} / \mathrm{h}$.

