Question#18865

How much weight can be lifted by a Hydrogen (& Degree Centigrade. Pl. describe the inputs used.

Solution:

Let:

$$V = 10 \, m^3$$

$$T = 20^{\circ}\text{C}$$

m-?

$$F = mg$$
, $m = \frac{F}{g}$ were: F – buoyant force

According to the Archimedes' principle:

$$F = (\rho_{air} - \rho_{hydrogen})Vg$$

Were: ρ_{air} – density of air, $\rho_{hydrogen}$ - density of hydrogen, g= 9,8 $\,m/s^2$

$$\rho_{air}=1.29~{\rm kg/m^3}\,,~\rho_{hydrogen}=0.09~{\rm kg/m^3}$$

$$m = \frac{(\rho_{air} - \rho_{hydrogen})Vg}{g} = (\rho_{air} - \rho_{hydrogen})V = (1.29 - 0.09) * 10 = 12 kg$$

Answer: 12 kg.

For Helium: $\rho = 0.178 \text{ kg/m}^3$, m = (1.29 - 0.178) * 10 = 11.12 kg