Question\#18865

How much weight can be lifted by a Hydrogen (\& also separately for Helium) filled balloon of 10 cubic Meter, at sea level \& at a temp. of 20 Degree Centigrade. Pl. describe the inputs used.

Solution:
Let:
$V=10 \mathrm{~m}^{3}$
$T=20^{\circ} \mathrm{C}$
$m-$?
$F=m g, m=\frac{F}{g}$ were: $\mathrm{F}-$ buoyant force
According to the Archimedes' principle:
$F=\left(\rho_{\text {air }}-\rho_{\text {hydrogen }}\right) V g$
Were: $\rho_{\text {air }}$ - density of air, $\rho_{\text {hydrogen }}$ - density of hydrogen, $g=9,8 \mathrm{~m} / \mathrm{s}^{2}$
$\rho_{\text {air }}=1.29 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{\text {hydrogen }}=0.09 \mathrm{~kg} / \mathrm{m}^{3}$
$m=\frac{\left(\rho_{\text {air }}-\rho_{\text {hydrogen }}\right) V g}{g}=\left(\rho_{\text {air }}-\rho_{\text {hydrogen }}\right) V=(1.29-0.09) * 10=12 \mathrm{~kg}$

Answer: $\mathbf{1 2} \mathbf{~ k g}$.

For Helium: $\rho=0.178 \mathrm{~kg} / \mathrm{m}^{3}, m=(1.29-0.178) * 10=\mathbf{1 1 . 1 2} \mathbf{~ k g}$

