Speed v: distance/time
Angular speed w: angle/time

If a body moves along a circle circumference,
then 360 degrees of motion (2pi [rads]) are equivalent to
2pi radiuses of distance, which helps us say: $v=w r$

Angular velocity: x rads/s == x radiuses in one second
Angular acceleration: ($\mathrm{x} \mathrm{rad} / \mathrm{s}$)/s ==x ($1 \mathrm{rad} / \mathrm{s}$) speeds in one sec.
The tangential acceleration is the acceleration that shows how much the measure of speed(==velocity) gets different along the path of motion [>>> equivalent of angular acceleration in terms of distance], while the centripetal acceleration shows how much the direction of speed (==velocity) changes.

Similarly, then,
tangential acc. = angular acc. x radius, while centripetal force: $|F|=m|a|=m u^{\wedge} 2 / r$.

