A solid metallic having a volume of $.3 \mathrm{~m}^{\wedge} 3$ is completely submeged in water. The weight of the cube when submerged in water is 52300 N . Determine the kind of material the cube is made of. (density of gold $=19300 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, density of silver $=18200 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, density of copper= 17200 $\mathrm{kg} / \mathrm{m}^{\wedge} 3$

Solution:

Let:
$V=0.3 m^{3}$
$P_{\text {in water }}=52300$
$\rho_{A u}=19300 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{A g}=18200 \mathrm{~kg} / \mathrm{m}^{3}, \rho_{C u}=17200 \mathrm{~kg} / \mathrm{m}^{3}$
$\rho-$ ?

The weight of metallic in water is:
$P_{\text {in water }}=m g-F_{A}$,were: $m$ - mass of metallic, $g=$ 9,8, $F_{A}$ - buoyant force (Archimedes'force)
$F_{A}=\rho_{\text {water }} g V$
$m=\frac{P_{\text {in water }}+F_{A}}{g}=\frac{P_{\text {in water }}+\rho_{\text {water }} g V}{g}=\frac{P_{\text {in water }}}{g}+\rho_{\text {water }} V$
Such as: $m=\rho V, \rho=\frac{m}{V}$
$\rho=\frac{\frac{P_{\text {in water }}}{g}+\rho_{\text {water }} V}{V}=\frac{P_{\text {in water }}}{g V}+\rho_{\text {water }}$
$\rho=\frac{52300}{9.8 * 0.3}+1000=18789.12 \mathrm{~kg} / \mathrm{m}^{3}$
Answer: the density of metallic is middle from gold and silver, maybe it is an alloy.

