2 kg bras black is attached to a string and submerged under water. Find the buoyant force and the tension in the rope. (density of bras $=8700 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$

Solution:
According to Archimedes' principle:
$F_{\text {buoyant }}=\rho g V$, were $\rho-$ dencity of water, $V-$ value of an object, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
Such as: $m=\rho_{\text {bras }} V, V=\frac{m}{\rho_{\text {bras }}}$
$F_{\text {buoyant }}=\frac{\rho g m}{\rho_{\text {bras }}}=\frac{1000 * 9.8 * 2}{8700}=2.25 \mathrm{~N}$
The tension in the rope is:
$F=m g-F_{\text {buoyant }}$
$F=2 * 9.8-2.25=17.35 N$
Answer: the buoyant force- 2.25 N, the tension on the rope-17.35 N.

