Maria is racing her bike down the cobblestone sidewalk. She is riding at a constant velocity of $10.2 \mathrm{~m} / \mathrm{s}$. Suddenly a group of people step out in front of her. They are 6 meters in front and she needs to stop. The coefficient of friction between the ground and Maria's tire is 0.35 . The mass of her + her bike is 130 kg . She slams the brakes with 800 N of force. Will she be able to stop in time? Or will she run over the people?

Solution:

Let:
$v=10.2 \mathrm{~m} / \mathrm{s}$
$S=6 m$
$m=150 \mathrm{~kg}$
$F=800 N$
$k=0.35$

The brake distance is:
$S_{\text {brake }}=v t-\frac{1}{2} a t^{2}, v=a t, t=\frac{v}{a}$
$S_{\text {brake }}=\frac{v^{2}}{a}-\frac{v^{2}}{2 a}=\frac{v^{2}}{2 a^{\prime}}$, were a is the brake acceleration
$a=\frac{F}{m}$
$S_{\text {brake }}=\frac{m v^{2}}{2 F}=\frac{150 * 10.2^{2}}{2 * 800}=9.75 \mathrm{~m}$
Such as the brake distance (without friction factor) is more then distance needs to stop, she will run over the people. With friction factor the brake way will be more.

