A rocket of mass 5700 kg ejects mass at a constant rate of $15 \mathrm{~kg} / \mathrm{s}$ with constant speed of $12 \mathrm{~km} / \mathrm{s}$. The acceleration of the rocket 1 minute after the blast is ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s} 2$)
$1.34 .9 \mathrm{~m} / \mathrm{s} 2$
$2.27 .5 \mathrm{~m} / \mathrm{s} 2$
$3.3 .50 \mathrm{~m} / \mathrm{s} 2$
$13.5 \mathrm{~m} / \mathrm{s} 2$

Solution

$$
m=m_{0}-\frac{d m}{d t} t \rightarrow m(1 \mathrm{~min})=5700-15 * 60=4800 \mathrm{~kg} .
$$

For the Second Newton's law

$$
\begin{gathered}
m a=\frac{d m}{d t} V-m g \\
a=\frac{d m}{d t} * \frac{V}{m}-g=\frac{12000}{4800} * 15-10=27.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{gathered}
$$

Right answer is 2) $27.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

