Find the electric field intensity at a distance z above one end of the straight line segment of length 1 ,which carries a uniform line charge k . Check that your formula is consistant what you would expect for $\mathrm{z} . \& \mathrm{gt} ; \& \mathrm{gt} ; \& \mathrm{gt} ; 1$.

Solution
Uniform line charge $\mathrm{k}=\lambda$; length $\mathrm{l}=\mathrm{L}$.

$$
\begin{gathered}
E_{Z}=\frac{1}{4 \pi \varepsilon_{0}} \int_{x=0}^{x=L} \frac{\lambda d x}{r^{2}} \cos \theta ;\left(r^{2}=z^{2}+x^{2} ; \cos \theta=\frac{z}{r}\right) \\
=\frac{1}{4 \pi \varepsilon_{0}} \lambda z \int_{0}^{L} \frac{1}{\left(z^{2}+x^{2}\right)^{\frac{3}{2}} d x=\frac{1}{4 \pi \varepsilon_{0}} \lambda z\left[\frac{1}{z^{2}} \frac{x}{\sqrt{z^{2}+x^{2}}}\right]_{x=0}^{x=L}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{z} \frac{L}{\sqrt{z^{2}+L^{2}}}}=\frac{1}{E_{x}=\frac{1}{4 \pi \varepsilon_{0}} \int_{0}^{L} \frac{\lambda d x}{r^{2}} \sin \theta=-\frac{1}{4 \pi \varepsilon_{0}} \lambda \int_{0}^{L} \frac{x d x}{\left(z^{2}+x^{2}\right)^{\frac{3}{2}}}=-\frac{1}{4 \pi \varepsilon_{0}} \lambda\left[-\frac{1}{\sqrt{z^{2}+x^{2}}}\right]_{x=0}^{x=L}}=-\frac{1}{4 \pi \varepsilon_{0}} \lambda\left[\frac{1}{z}-\frac{1}{\sqrt{z^{2}+L^{2}}}\right]
\end{gathered}
$$

Net electric field $E=E_{x}+E_{z}$

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda}{z}\left[\left(\frac{z}{\sqrt{z^{2}+L^{2}}}-1\right) \hat{x}+\left(\frac{L}{\sqrt{z^{2}+L^{2}}}\right) \hat{z}\right]
$$

For $z \gg L$ and $q=\lambda L ; E \rightarrow \frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda L}{z^{2}} \hat{z}$

