A lever is used to lift a heavy load. When a 52 N force pushes the left end of the lever down 1.28 m , the load rises 0.23 m .
4) If the lever is only 84% efficient, what is the work output?
5) If the lever is only 84% efficient, what would be the weight of the load it could lift with this output?

Solution:

Let:
$F_{1}=52 N$
$S_{1}=1.28 \mathrm{~m}$
$S_{2}=0.23 \mathrm{~m}$
$k=84 \%=0.84$
A(output)-?
$F_{2}-$? output weight
According to the Law of the laver:
$\frac{F_{1}}{F_{2}}=\frac{S_{2}}{S_{1}}$
$F_{2}=\frac{F_{1} S_{1}}{S_{2}}$
Such as the laver is only 84\% efficient:
$F_{2}=0.84 \frac{F_{1} S_{1}}{S_{2}}=0.84 * \frac{52 * 1.28}{0.23}=243.09 \mathrm{~N}$
$A($ output $)=F_{2} * S_{2}=243.09 * 0.23=55.91 \mathrm{~J}$
Answer: the output work is 55.91 J , the weight of the load is 243.09 N

