

A model rocket with a mass of 1.4kg is launched straight up at a speed of 43m/s.

4. What is its potential energy at the maximum height?
5. What is the rocket's maximum height?
6. What is the rocket's speed at a height of 47.17m?

Solution:

Let:

$$m = 1.4 \text{ kg}$$

$$v_0 = 43 \text{ m/s}$$

$$h = 47.17 \text{ m}$$

$$E_p - ?$$

$$H - ?$$

$$v_h - ?$$

$$E_p = mgH, \text{ where } g = 9.8 \text{ m/s}^2 \text{ gravitational acceleration}$$

$$H = \frac{1}{2}gt^2, v = gt \Rightarrow t = \frac{v}{g}$$

$$H = \frac{v^2}{2g}$$

$$H = \frac{43^2}{2*9.8} = 94.34 \text{ m}$$

$$E_p = 1.4 * 9.8 * 94.34 = 1294.35 \text{ J}$$

$$v = v_0 - gt, t = \sqrt{\frac{2h}{g}} \Rightarrow$$

$$v = v_0 - \sqrt{2gh}$$

$$v_h = 43 - \sqrt{2 * 9.8 * 47.17} = 12.6 \text{ m/s}$$

Answer: $E_p = 1294.35 \text{ J}$, $H = 94.34 \text{ m}$, $v_h = 12.6 \text{ m/s}$.