

The linear density of a vibrating string is $1.3 \times 10^{-4} \text{ kg m}^{-1}$. A transverse wave is propagating on the string and is described by the equation

$$y(x, t) = 0.021 \sin(x - 30t)$$

where x and y are in metres and t is in seconds. Calculate the tension in the string.

Solution

$$v = f\lambda = \frac{\omega}{2\pi} \frac{2\pi}{k} = \frac{\omega}{k} = \frac{30}{1} = 30 \frac{m}{s}$$

To obtain the tension is a bit more complicated because it appears within a square root:

$$v = \sqrt{\frac{T}{\mu}} \Rightarrow T = \mu v^2 = 1.3 \times 10^{-4} \times 30^2 = 0.117 \text{ N}$$