

Question 15509

Let φ_0 denote an angle at which the ball is thrown, and v_0 denote the initial velocity, φ denote the angle between the horizontal line and velocity vector.

a) The general equation for velocity of an object, moving with constant acceleration is

$\vec{v} = \vec{v}_0 + \vec{a}t$. Lets write it in a vector form: $\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \begin{pmatrix} v_{0x} \\ v_{0y} \end{pmatrix} + \begin{pmatrix} 0 \\ -g \end{pmatrix}t = \begin{pmatrix} v_0 \cos \varphi_0 \\ v_0 \sin \varphi_0 \end{pmatrix} + \begin{pmatrix} 0 \\ -g \end{pmatrix}t$, where $g = 9.81 \text{ m/s}^2$. From here, for $t = 1$, $v_x \approx 9.83 \text{ m/s}$, $v_y \approx -2.91 \text{ m/s}$.

b) The angle might be found from angle between v_x and v_y : $\tan \varphi = \frac{v_y(t)}{v_x(t)} = \frac{v_0 \sin \varphi_0 - gt}{v_0 \cos \varphi_0}$,

which gives $t_1 = \frac{v_0}{g}(\sin \varphi_0 - \cos \varphi_0 \tan \varphi) \approx 0.34 \text{ s}$.

c) Below the horizontal means formal substitution $\varphi \rightarrow -\varphi$, which gives

$t_2 = \frac{v_0}{g}(\sin \varphi_0 + \cos \varphi_0 \tan \varphi) \approx 1.07 \text{ s}$.