

Question #14618

Let the coordinates of the stone, thrown downward be y_1 and the stone, thrown upward be y_2 .

The general equation for a motion of an accelerated object is $y = y_0 + v_y t + \frac{gt^2}{2}$. Hence, the

equations for y_1, y_2 are: $y_1 = h - v_0 t - \frac{gt^2}{2}$, $y_2 = v_0 t - \frac{gt^2}{2}$, where h is the height of cliff. In

order to find the position, where the stones cross, $y_1 = y_2 \Rightarrow 2v_0 t = h, t = \frac{h}{2v_0}$ - this is the interval

time from the beginning of motion, when stones cross. Finally, the height from the base of cliff is

$$D = \frac{v_0 h}{2v_0} - \frac{gh^2}{8v_0^2} = 2.67 \text{ m} \text{ (substituting the time we found into } y_2 \text{).}$$