Problem:

3 thin uniform rods each of length L \& mass M are joined to form an equilateral triangle .find the moment of inertia of the system about an axis along 1 side of the triangle?

Solution:

According to the definition of momentum of inertia:

In this case:

$$
\begin{aligned}
& I=2 * \int_{0}^{L \frac{\sqrt{3}}{2}} r^{2} d m=\int_{0}^{L \frac{\sqrt{3}}{2}} r^{2} \frac{M}{L} d l=\int_{0}^{L \frac{\sqrt{3}}{2}} r^{2} \frac{M}{L} \frac{d r}{\cos \frac{\pi}{6}}=\frac{2 M}{\sqrt{3} L} \int_{0}^{L \frac{\sqrt{3}}{2}} r^{2} d r \\
& \quad=\frac{1}{2} M L^{2}
\end{aligned}
$$

Here integral gives the momentum of inertia of only one rod. Thus, it is multiplied by 2.

$$
\text { Answer: } I=\frac{1}{2} M L^{2}
$$

