Car A is travelling at $25 \mathrm{~m} . \mathrm{s}-1$ when it passes point X . At exactly the same time, car B, travelling towards A at $20 \mathrm{~m} . \mathrm{s}-1$, passes point Y . X and Y are 225 m apart. calculate the distance that B travels from the time it passes point Y until it meets A .

Solution

$$
S=S_{1}+S_{2}=225 \mathrm{~m}=\mathrm{V}_{\mathrm{A}} \mathrm{t}+\mathrm{V}_{\mathrm{B}} \mathrm{t}=\left(\mathrm{V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right) \mathrm{t} \gg \mathrm{t}=\frac{\mathrm{S}}{\left(\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right)}
$$

The distance that B travels from the time it passes point Y until it meets A

$$
S_{2}=\mathrm{V}_{\mathrm{B}} \mathrm{t}=\frac{\mathrm{S} \mathrm{~V}_{\mathrm{B}}}{\left(\mathrm{~V}_{\mathrm{A}}+\mathrm{V}_{\mathrm{B}}\right)}=\frac{225 \times 20}{20+25}=100 \mathrm{~m}
$$

