A ball is thrown upward with an initial horizontal velocity of $8 \mathrm{~m} / \mathrm{s}$, and an initial vertical veocity of $40 \mathrm{~m} / \mathrm{s}$
find Vo (V knot)
find the position and velociy of the ball after 2.5 secs
find th and h
find $t r$ and r

Solution

$$
\begin{gathered}
V_{0}=\sqrt{V_{0 y}^{2}+V_{0 x}^{2}}=\sqrt{40^{2}+8^{2}}=40.8 \frac{\mathrm{~m}}{\mathrm{~s}} \\
h(t)=V_{0 y} t-\frac{g t^{2}}{2} \\
r(t)=V_{0 x} t
\end{gathered}
$$

for $\mathrm{t}=2.5 \mathrm{~s}: h=40 * 2.5-0.5 * 10 * 2.5^{2}=68,75 \mathrm{~m}$

$$
r=8 * 2.5=20 \mathrm{~m}
$$

$$
V_{y}(2.5)=40-10 * 2.5=15 \frac{\mathrm{~m}}{\mathrm{~s}} ; V_{x}=8 \frac{\mathrm{~m}}{\mathrm{~s}} ; V=\sqrt{V_{y}^{2}+V_{x}^{2}}=\sqrt{15^{2}+8^{2}}
$$

$$
=17 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

$$
h_{\max }=80 m
$$

$r_{\max }=32 \mathrm{~m}$

