53 124
Assignments Done
97,7%
Successfully Done
In October 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Statistics and Probability Question for Marilyn Davis

Question #6182
70% of married couples paid for their honeymoon themselves. You randomly select 20 married couples and ask each if they paid for their honeymoon themselves. Find the probability thaqt the number of cuples who say they paid for their honeymoon themselves is a)exactly one b) more than one, and c) at most one.
Expert's answer
a)exactly one
Let x- random variable, which represents amount of couples who paid for their honeymoon themselves.
Probability that couple paid for themselves= 0.7
That they doesn’t 0.3
We can use Bernulli’s formula here . Let’s recall it:

where n-number of trials
k-number of successes
n-k – number of failures
p-probability of success in one trial
(1-p) – probability of failure in one trial

We have n=20 trials and each of them has two possible outcomes (paid themselves or not paid themselves) with probabilities p=0.7 and q=1-p=0.3
So we have due to Bernulli’s formula:



b) more than one

c) at most one


Dear Marilyn! For you and other our visitors we've created a video on this problem. Please take a look!

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question