Answer to Question #25891 in Differential Equations for Melvin

Question #25891
Let p be a real number. Consider the PDEs
xu_x + yu_y = pu −∞< x < ∞, −∞ < y < ∞.
(a) Find the characteristic curves for the equations.
(b) Let p = 4. Find an explicit solution that satisfies u = 1 on the circle x2 + y2 = 1.
(c) Let p = 2. Find two solutions that satisfy u(x, 0) = x^2, for every x > 0.

I know how to solve a) but b,c was not that easy. Solution for b should be u(x,y)=(x^2+y^2) and for c= u(x; y) = x^2 + ky^2, where k is a real nr.
u_x = partial of u with respect to x
u_y = partial of u with respect to y

Thanks for the help it's much appriciated!
Expert's answer

Not answered

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question

New on Blog