Answer to Question #25891 in Differential Equations for Melvin

Question #25891

Let p be a real number. Consider the PDEs
xu_x + yu_y = pu −∞< x < ∞, −∞ < y < ∞.
(a) Find the characteristic curves for the equations.
(b) Let p = 4. Find an explicit solution that satisfies u = 1 on the circle x2 + y2 = 1.
(c) Let p = 2. Find two solutions that satisfy u(x, 0) = x^2, for every x > 0.
I know how to solve a) but b,c was not that easy. Solution for b should be u(x,y)=(x^2+y^2) and for c= u(x; y) = x^2 + ky^2, where k is a real nr.
u_x = partial of u with respect to x
u_y = partial of u with respect to y
Thanks for the help it's much appriciated!
Melvin

College and University is a time in your life when you find your passions and your interests and you study…

APPROVED BY CLIENTS

I was struggling with a class and assignment expert did amazing job assisting in my struggles. I was sketched out at first thinking there is no way a cite like this existed but they are everything they say they are!

## Comments

## Leave a comment