64 517
Assignments Done
99,3%
Successfully Done
In September 2018

Answer to Question #23564 in Algebra for Mohammad

Question #23564
Let R be a left artinian ring and C be a subring in the center Z(R) of R. Show that Nil C = C ∩ rad R.
Expert's answer
Let a ∈Nil C. Then aR is a nil ideal of R, so aR ⊆rad R. This shows that Nil C ⊆ C ∩ rad R. For the converse, notethat rad R is nil (in fact nilpotent, since R is left artinian).Therefore, C ∩ rad R ⊆Nil C.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions