57 254
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Abstract Algebra Question for Tsit Lam

Question #25255
Let R be a left primitive ring. Show that for any nonzero idempotent e ∈ R, the ring A = eRe is also left primitive
Expert's answer
Let V be a faithful simpleleft R-module. It suffices to show that U = eV is afaithful simple left A-module. FirstA · U = eRe · eV = eReV ⊆ eV = U, so U is indeed an A-module.Let a = ere ∈ A, where r∈ R. Then ae = ere2 = a.If aU = 0, then 0 = aeV = aV implies that a = 0, soAU is faithful. To check that AU is simple, let us show that for0 <> u ∈ U and u'∈ U, we have u' ∈ Au. Note that u, u' ∈ eV implies u = eu, u' = eu'.We have u' = ru for some r ∈ R, so u' = eu' = eru = (ere)u∈ Au, as desired.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question