62 514
Assignments Done
98,8%
Successfully Done
In June 2018

Answer to Question #17176 in Abstract Algebra for Melvin Henriksen

Question #17176
For a subset S in a ring R. Let R be a semisimple ring, I be a left ideal and J be a right ideal in R. Show that annl (annr(I)) = I and annr (annl(J)) = J.
Expert's answer
By symmetry, it is sufficient to prove the above “Double Annihilator Property” for I. Let I = Re,where e = e2 and let f = 1− e. We claim that annr(I)= fR. Indeed, since I · fR = RefR = 0, we have fR ⊆annr(I). Conversely, if a ∈annr(I), then ea = 0 so a = a − ea ∈ fR. This proves annr(I) = fR,and hence similarly annl (annr(I)) = annl(fR)= Re = I.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions