Let find eigen values. For that we need the next formula:

$$
\operatorname{det}(A-\lambda I)=0
$$

Where I is the identity matrix

$$
\begin{gathered}
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
2 & 3-\lambda & 2 \\
-2 & 1 & 2-\lambda
\end{array}\right|=(2-\lambda)^{2}(3-\lambda)-4+2+2(3-\lambda)-2(2-\lambda)-2(2-\lambda) \\
=-\lambda^{3}+7 \lambda^{2}-14 \lambda+8 \\
-\lambda^{3}+7 \lambda^{2}-14 \lambda+8=0 \\
\lambda^{3}-7 \lambda^{2}+14 \lambda-8=0 \\
(\lambda-1)(\lambda-2)(\lambda-4)=0 \\
\\
{\left[\begin{array}{l}
\lambda-1=0 \\
\lambda-2=0 \\
\lambda-4=0
\end{array}\right)>\left[\begin{array}{l}
\lambda_{1}=1 \\
\lambda_{2}=2 \\
\lambda_{3}=4
\end{array}\right.}
\end{gathered}
$$

Now we will find the eigen vectors corresponding to each eigen value

1. For $\lambda_{1}=1$

$$
\begin{aligned}
& \left(A-\lambda_{1}\right) \alpha=0 \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 2 & 2 \\
-2 & 1 & 1
\end{array}\right] *\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right]=0}
\end{aligned}
$$

Having the system of three equations

$$
\left\{\begin{array}{c}
\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
2 \alpha_{1}+2 \alpha_{2}+2 \alpha_{3}=0 \\
-2 \alpha_{1}+\alpha_{2}+\alpha_{3}=0
\end{array}\right.
$$

Solve the system by the Gauss method

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
2 & 2 & 2 & 0 \\
-2 & 1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 \\
-2 & 1 & 1 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 & 1 & 0 \\
-2 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Having the next equations

$$
\begin{aligned}
& \left\{\begin{array}{c}
\alpha_{1}+\alpha_{2}+\alpha_{3}=0 \\
\alpha_{2}+\alpha_{3}=0
\end{array}\right. \\
& \left\{\begin{array}{c}
\alpha_{1}+\alpha_{2}=-\alpha_{3} \\
\alpha_{2}=-\alpha_{3}
\end{array}\right.
\end{aligned}
$$

Let $\alpha_{3}=t$, than $\alpha_{2}=-t$ and $\alpha_{1}=0$. That means that our eigen vector has the following form:
$\alpha=\left(\begin{array}{c}0 \\ -t \\ t\end{array}\right)$ or $\alpha=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
2. For $\lambda_{2}=2$

Similar to the previous

$$
\left[\begin{array}{ccc}
0 & 1 & 1 \\
2 & 1 & 2 \\
-2 & 1 & 0
\end{array}\right] *\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]=0
$$

$$
\begin{aligned}
&\left(\begin{array}{ccc|c}
0 & 1 & 1 & 0 \\
2 & 1 & 2 & 0 \\
-2 & 1 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
0 & 1 & 1 & 0 \\
2 & 1 & 2 & 0 \\
0 & 2 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{lll|l}
2 & 1 & 2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & 1 / 2 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
&\left\{\begin{array}{c}
\beta_{1}+\frac{1}{2} \beta_{2}+\beta_{3}=0 \\
\beta_{2}+\beta_{3}=0
\end{array}\right. \\
&\left\{\begin{array}{c}
\beta_{1}+\frac{1}{2} \beta_{2}=-\beta_{3} \\
\beta_{2}=-\beta_{3}
\end{array}\right.
\end{aligned}
$$

Let $\beta_{3}=t=>\beta_{2}=-t=>\beta_{1}=-\frac{1}{2} t=>\beta=\left(\begin{array}{c}-\frac{1}{2} t \\ -t \\ t\end{array}\right)$ or $\beta=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$
3. For $\lambda_{3}=4$

Similar to the previous

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
2 & -1 & 2 \\
-2 & 1 & -2
\end{array}\right] *\left[\begin{array}{l}
\gamma_{1} \\
\gamma_{2} \\
\gamma_{3}
\end{array}\right]=0} \\
& \left(\begin{array}{ccc|c}
-2 & 1 & 1 & 0 \\
2 & -1 & 2 & 0 \\
-2 & 1 & -2 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
0 & 0 & 3 & 0 \\
2 & -1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
1 & -\frac{1}{2} & 1 & 0 \\
0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left\{\begin{array}{c}
\gamma_{1}-\frac{1}{2} \gamma_{2}+\gamma_{3}=0 \\
\gamma_{3}=0
\end{array}\right. \\
& \left\{\begin{array}{c}
\gamma_{1}=\frac{1}{2} \gamma_{2} \\
\gamma_{3}=0
\end{array}\right. \\
& \text { Let } \gamma_{2}=t=>\gamma_{1}=\frac{1}{2} t=>\gamma=\left(\begin{array}{c}
\frac{1}{2} t \\
t \\
0
\end{array}\right) \text { or } \gamma=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
\end{aligned}
$$

Answer: 1) $\lambda_{1}=1 ; \alpha=\left(\begin{array}{c}0 \\ -1 \\ 1\end{array}\right)$
2) $\lambda_{2}=2 ; \beta=\left(\begin{array}{c}1 \\ 2 \\ -2\end{array}\right)$
3) $\lambda_{3}=4 ; \gamma=\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$

