The mass of a metal cylinder varies jointly as its height and the square of the radius of its base. One cylinder has a mass of 120 g . Find the mass of a second cylinder made of the same metal, 3 times as high, and having one-half the base radius of the first.

Solution

$$
\begin{aligned}
& m=\rho V=\rho h S=\rho h \pi r^{2} \gg \frac{m_{2}}{m_{1}}=\frac{h_{2} r_{2}{ }^{2}}{h_{1} r_{1}{ }^{2}}=3 *\left(\frac{1}{2}\right)^{2}=\frac{3}{4} \gg m_{2}=\frac{3}{4} * 120 \mathrm{~g} \\
& =90 \mathrm{~g}
\end{aligned}
$$

