The Gauss method.
We write the system in the form:
$\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & -1 & 2 \\ 4 & -6 & -4\end{array}\right)=\left(\begin{array}{l}5 \\ 8 \\ -2\end{array}\right)$
We multiply the first row in (3). Multiplying the second row by (-1). Add the second line to the first:
$\left(\begin{array}{lll}0 & 7 & 7 \\ 3 & -1 & 2 \\ 4 & -6 & -4\end{array}\right)=\left(\begin{array}{l}7 \\ 8 \\ -2\end{array}\right)$
Multiplying the second row in (4). Multiplying the 3-th row in (3). Add the 3rd row to the second:
$\left(\begin{array}{ccc}0 & 7 & 7 \\ 0 & 14 & 20 \\ 4 & -6 & -4\end{array}\right)=\left(\begin{array}{l}7 \\ 38 \\ -2\end{array}\right)$
We multiply the first row in (2). Multiplying the second row by (-1). Add the second line to the first:
$\left(\begin{array}{lll}0 & 0 & -6 \\ 0 & 14 & 20 \\ 4 & -6 & -4\end{array}\right)=\left(\begin{array}{l}-24 \\ 38 \\ -2\end{array}\right)$
From the first line express x3 --- c
$x_{3}=\frac{-24}{-6}=4$
From the second row express $x 2---b$
$\mathrm{x}_{2}=\frac{38-20 \cdot 4}{14}=\frac{-42}{14}=-3$
From the 3rd row express $\times 1$--- a
$\mathrm{x}_{1}=\frac{-2-(-6) \cdot(-3)-(-4) \cdot 4}{4}=\frac{-4}{4}=-1$
$b=-3$

