Answer to Question \#91542 - Math - Analytic Geometry

Question

Obtain the equation of the conic, a focus of which lies at $(2,1)$, the directrix of which is $x+y=0$ and which passes through (1,4). Also identify the conic.

Solution

We need to find the distance between $(2,1)$ and $(1,4)$ Using distance formula:
$\sqrt{(1-2)^{2}+(4-1)^{2}}$
$\sqrt{(1+9)}$
$\sqrt{10}$
Distance of the point $(1,4)$ from the directrix $x+y=0$ is
$\frac{(1+4)}{\sqrt{2}}=\frac{5}{\sqrt{2}}$

Ratio of distance is $\frac{\sqrt{10}}{5 / \sqrt{2}}$

This ration is less than 1 , so this is an ellipse.

Its equation is obtained from ratio of the distance of a point on ellipse say (x, y)
from focus $(2,1)$ and its distance from the directrix $x+y=0$ is being $2 / \sqrt{ } 5$.
The latter is $x+y / \sqrt{ } 2$.
Thus, the equation is

$$
\begin{aligned}
& \frac{(x-2)^{2}+(y-1)^{2}}{\left(\frac{x+y}{\sqrt{2}}\right)^{2}}=\left(\frac{2}{\sqrt{5}}\right)^{2}=\frac{4}{5} \\
& 5\left(x^{2}-4 x+4+y^{2}-2 y+1\right)=2\left(x^{2}+2 x y+y^{2}\right) \\
& 5 x^{2}-20 x+20+5 y^{2}-10 y+5=2 x^{2}+4 x y+2 y^{2} \\
& 3 x^{2}-4 x y-20 x+3 y^{2}-10 y+25=0
\end{aligned}
$$

This conic is Ellipse.

