Question: Choose the correct answer.

Which of the following statement is true for sequence $\{a_n = (-1)^{n-1}\}$?

- a. The sequence is bounded
- b. The sequence is increasing
- c. The sequence is decreasing
- d. The sequence is neither increasing nor decreasing

Solution

The option (a) is Correct.

Explanation

The nth term of the sequence is $a_n = (-1)^{n-1}$

Hence the sequence is

$$a_1 = (-1)^{1-1} = 1$$
, $a_2 = (-1)^{2-1} = -1$, $a_3 = (-1)^{3-1} = 1$, $a_4 = (-1)^{4-1} = -1$...

We can see that for all values of $n \in \mathbb{N}$, there exist two numbers 1 and – 1 such that $a_n \leq 1$ for all even n, and $a_n \geq -1$ for all odd n.

The two number 1 and – 1 are called lower and upper bound.

Hence the series is bounded above and bounded below.

Bounded Sequences of Real Numbers

A sequence a_n ; n = 1, 2, 3, ... of real numbers is said to be **Bounded Above** if there exists a real number $M \in \mathbb{R}$ such that $a_n \leq M$ for every $n \in \mathbb{N}$. And if for $m \in \mathbb{R}$ such that $m \leq a_n$ for every $n \in \mathbb{N}$, the sequence is called **Bounded Below**.

Taking *n* along horizontal and $(-1)^{n-1}$ along vertical we get the graph as shown by the dots below.