

Answer to Question #90371 – Math – Linear Algebra

Question

Let A be a matrix of 3×2 order with real entities. $H = A(A^T A)^{-1} A^T$, where A^T is the transpose of the matrix. Let I be the identity matrix of the order 3×3 . $H^2 = ?$

Solution

A be a 3×2 matrix. Let $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$

Given that $H = A_{3 \times 2} (A^T_{2 \times 3} A_{3 \times 2})^{-1} A^T_{2 \times 3}$
 $= A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3}$ (Since the order of $B = A^T_{2 \times 3} A_{3 \times 2}$ is 2×2)

Consider, $H^2 = (A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3})^2$
 $= (A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3}) (A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3})$

$$= A_{3 \times 2} (B)^{-1}_{2 \times 2} (A^T_{2 \times 3} A_{3 \times 2}) (B)^{-1}_{2 \times 2} A^T_{2 \times 3}$$

(Since Matrix multiplication is associative)

$$= A_{3 \times 2} (B)^{-1}_{2 \times 2} (B_{2 \times 2}) (B)^{-1}_{2 \times 2} A^T_{2 \times 3}$$
 (Since, $B_{2 \times 2} = A^T_{2 \times 3} A_{3 \times 2}$)

$$= A_{3 \times 2} (B)^{-1}_{2 \times 2} (I_{2 \times 2}) A^T_{2 \times 3}$$
 (Since, $(B_{2 \times 2}) (B)^{-1}_{2 \times 2} = I_{2 \times 2}$)

$$= A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3}$$
 (Since, $I_{2 \times 2} A^T_{2 \times 3} = A^T_{2 \times 3}$)

$$= A_{3 \times 2} C_{2 \times 3}$$
 (Since, $(B)^{-1}_{2 \times 2} A^T_{2 \times 3} = C_{2 \times 3}$)

$$= D_{3 \times 3}$$

Therefore, $H^2 = (A_{3 \times 2} (B)^{-1}_{2 \times 2} A^T_{2 \times 3})^2 = D_{3 \times 3}$.

In this problem we cannot apply $(AB)^{-1} = (B)^{-1}(A)^{-1}$ (Since, A and Transpose A are not invertible in the given problem as they are rectangular matrices)
