Answer to Question \#90371 - Math - Linear Algebra

Question

Let A be a matrix of 3×2 order with real entities. $H=A\left(A^{\wedge} T A\right)^{\wedge}-1 A^{\wedge} T$, where $\mathrm{A}^{\wedge} \mathrm{T}$ is the transpose of the matrix. Let I be the identity matrix of the order 3×3. $\mathrm{H}^{\wedge} 2=$?

Solution

A be a 3×2 matrix. Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right]$

Given that $H=A_{3 \times 2}\left(A^{T}{ }_{2 \times 3} A_{3 \times 2}\right)^{-1} A^{T}{ }_{2 \times 3}$
$=A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}$ (Since the order of $B=A^{T}{ }_{2 \times 3} A_{3 \times 2}$ is 2×2)
Consider, $H^{2}=\left(A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\right)^{2}$
$=\left(A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\right)\left(A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\right)$
$=A_{3 \times 2}(B)^{-1}{ }_{2 \times 2}\left(A^{T}{ }_{2 \times 3} A_{3 \times 2}\right)(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}$
(Since Matrix multiplication is associative)
$=A_{3 \times 2}(B)^{-1}{ }_{2 \times 2}\left(B_{2 \times 2}\right)(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\left(\right.$ Since, $\left.B_{2 \times 2}=A^{T}{ }_{2 \times 3} A_{3 \times 2}\right)$
$=A_{3 \times 2}(B)^{-1}{ }_{2 \times 2}\left(I_{2 \times 2}\right) A^{T}{ }_{2 \times 3}\left(\right.$ Since, $\left.\left(B_{2 \times 2}\right)(B)^{-1}{ }_{2 \times 2}=I_{2 \times 2}\right)$
$=A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\left(\right.$ Since,$\left.I_{2 \times 2} A^{T}{ }_{2 \times 3}=A^{T}{ }_{2 \times 3}\right)$
$=A_{3 \times 2} C_{2 \times 3}\left(\right.$ Since, $\left.(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}=C_{2 \times 3}\right)$
$=D_{3 \times 3}$
Therefore, $H^{2}=\left(A_{3 \times 2}(B)^{-1}{ }_{2 \times 2} A^{T}{ }_{2 \times 3}\right)^{2}=D_{3 \times 3}$
In this problem we cannot apply $(A B)^{-1}=(B)^{-1}(A)^{-1}$ (Since, A and Transpose A are not invertible in the given problem as they are rectangular matrices)

