Answer to Question #90371 – Math – Linear Algebra

Question

Let A be a matrix of 3×2 order with real entities. H=A(A^TA)^-1A^T, where A^T is the transpose of the matrix. Let I be the identity matrix of the order 3×3 . H^2=?

Solution

			[a ₁₁	a_{12}
A be a 3×2 matrix.	Let	A =	<i>a</i> ₂₁	<i>a</i> ₂₂
			a_{31}	a_{32}

Given that
$$H = A_{3\times2}(A^{T}_{2\times3}A_{3\times2})^{-1}A^{T}_{2\times3}$$

 $= A_{3\times2}(B)^{-1}_{2\times2}A^{T}_{2\times3}$ (Since the order of $B = A^{T}_{2\times3}A_{3\times2}$ is 2 × 2)
Consider, $H^{2} = (A_{3\times2}(B)^{-1}_{2\times2}A^{T}_{2\times3})^{2}$
 $= (A_{3\times2}(B)^{-1}_{2\times2}A^{T}_{2\times3})(A_{3\times2}(B)^{-1}_{2\times2}A^{T}_{2\times3})$
 $= A_{3\times2}(B)^{-1}_{2\times2}(A^{T}_{2\times3}A_{3\times2})(B)^{-1}_{2\times2}A^{T}_{2\times3}$
(Since Matrix multiplication is associative)
 $= A_{3\times2}(B)^{-1}_{2\times2}(B_{2\times2})(B)^{-1}_{2\times2}A^{T}_{2\times3}$ (Since, $B_{2\times2} = A^{T}_{2\times3}A_{3\times2})$
 $= A_{3\times2}(B)^{-1}_{2\times2}(I_{2\times2})A^{T}_{2\times3}$ (Since, $(B_{2\times2})(B)^{-1}_{2\times2} = I_{2\times2})$
 $= A_{3\times2}(B)^{-1}_{2\times2}A^{T}_{2\times3}$ (Since, $I_{2\times2}A^{T}_{2\times3} = A^{T}_{2\times3}$)
 $= A_{3\times2}C_{2\times3}$ (Since, $(B)^{-1}_{2\times2}A^{T}_{2\times3} = C_{2\times3}$)
 $= D_{3\times3}$

Therefore, $H^2 = (A_{3\times 2}(B)^{-1}{}_{2\times 2}A^{T}{}_{2\times 3})^2 = D_{3\times 3}$. In this problem we cannot apply $(AB)^{-1} = (B)^{-1}(A)^{-1}$ (Since, A and Transpose A are not invertible in the given problem as they are rectangular matrices)

Answer provided by <u>https://www.AssignmentExpert.com</u>