Answer to Question \#89249 - Math - Linear Algebra

Question

An electronics company produces transistors, resistors, and computer chips. Each t ransistor requires 3 units of copper, 1 unit of zinc, and 2 units of glass. Each resisto r requires 3,2 , and 1 units of the three materials, and each computer chip requires 2 , 1 , and 2 units of these materials, respectively. How many of each product can be made with 1500 units of copper, 780 units of zinc, and 1110 units of glass? Solve t his exercise by using the inverse of the coefficient matrix to solve a system of equa tions.
The company can make transistors, resistors, and computer chips.

Solution

Let the number of Transisters $=x$.
Let the number of Resisters $=y$.
Let the number of Computer Chips $=z$.
Given the each transistor requires 3 units of copper, 1 units of zinc, and 2 units of glass.
Given that each resistor requires 3 units of copper, 2 units of zinc, and 1 unit of glass.
Given that each computer chip requires 2 units of copper, 1 unit of zinc, and 2 units of glass.
Total number of copper units $=1500$.
Total number of zinc units $=780$.
Total number of glass units $=1110$.
We can form the linear equations in the following way:
3(Transistors)+3(resisters)+2(computer chips)=total number of copper units

$$
\Rightarrow \quad 3 x+3 y+2 z=1500 \ldots \ldots \text { (1) }
$$

2 (Transistors) +2 (resisters) +1 (computer chip)=total number of zinc units

$$
\begin{equation*}
\Rightarrow \quad x+2 y+1 z=780 \tag{2}
\end{equation*}
$$

2(Transistors)+1(resisters)+2(computer chip)=total number of glass units

$$
\begin{equation*}
\Rightarrow \quad 2 x+y+2 z=1110 \tag{3}
\end{equation*}
$$

Equations (1), (2) and (3) can be written in the matrix notation as follows:

$$
\left[\begin{array}{lll}
3 & 3 & 2 \tag{4}\\
1 & 2 & 1 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1500 \\
780 \\
1110
\end{array}\right]
$$

To find $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ we use matrix inverse method.
From (4), $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]^{-1}\left[\begin{array}{c}1500 \\ 780 \\ 1110\end{array}\right]$.
Let the coefficient matrix be $A=\left[\begin{array}{lll}3 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$
Determinant of $\mathrm{A}=\left|\begin{array}{lll}3 & 3 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right|$
Expanding the determinant we get $|A|=3\left|\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right|-3\left|\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right|+2\left|\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right|$
$=3(4-1)-3(2-2)+2(1-4)\left(\right.$ Since, $\left.\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c\right)$
$=3(3)-3(0)+2(-3)$
$=9-0-6$
=3
Therefore, Determinant of A is $|A|=3 \neq 0$
A^{-1} exists.
Cofactors of an element $a_{i j}$ of A are denoted by $A_{i j}$

$$
\begin{aligned}
& A_{11}=(-1)^{1+1}\left|\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right| \\
& =(4-1) \\
& =3 \\
& A_{12}=(-1)^{1+2}\left|\begin{array}{ll}
1 & 1 \\
2 & 2
\end{array}\right| \\
& =-(4-4) \\
& =0 \\
& A_{13}=(-1)^{1+3}\left|\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right| \\
& =(1-4) \\
& =-3
\end{aligned}
$$

$$
\begin{aligned}
& A_{21}=(-1)^{2+1}\left|\begin{array}{ll}
3 & 2 \\
1 & 2
\end{array}\right| \\
& =-(6-2) \\
& =-4 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{ll}
3 & 2 \\
2 & 2
\end{array}\right| \\
& =(6-4) \\
& =2 \\
& A_{23}=(-1)^{2+3}\left|\begin{array}{ll}
3 & 3 \\
2 & 1
\end{array}\right| \\
& =-(3-6) \\
& =3
\end{aligned}
$$

$A_{31}=(-1)^{3+1}\left|\begin{array}{ll}3 & 2 \\ 2 & 1\end{array}\right|$
$=(3-4)$
$=-1$
$A_{32}=(-1)^{3+2}\left|\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right|$
$=-(3-2)$
$=-1$
$A_{33}=(-1)^{3+3}\left|\begin{array}{ll}3 & 3 \\ 1 & 2\end{array}\right|$
$=(6-3)$
$=3$
The cofactors matrix is $=\left[\begin{array}{ccc}3 & 0 & -3 \\ -4 & 2 & 3 \\ -1 & -1 & 3\end{array}\right]$
Adjoint $\mathrm{A}=\operatorname{Adj} \mathrm{A}=$ Transpose of cofactors matrix
$=\left[\begin{array}{ccc}3 & 0 & -3 \\ -4 & 2 & 3 \\ -1 & -1 & 3\end{array}\right]^{T}$
$\left[\begin{array}{ccc}3^{3} & -4 & -1 \\ 0 & 2 & -1 \\ -3 & 3 & 3\end{array}\right]$
Therfore, $\operatorname{Adj}(\mathrm{A})=\left[\begin{array}{ccc}3 & -4 & -1 \\ 0 & 2 & -1 \\ -3 & 3 & 3\end{array}\right]$
$A^{-1}=\frac{\operatorname{Adj}(A)}{\operatorname{det} A}$
$=\frac{1}{3}\left[\begin{array}{ccc}3 & -4 & -1 \\ 0 & 2 & -1 \\ -3 & 3 & 3\end{array}\right]$
Therefore, $A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}3 & -4 & -1 \\ 0 & 2 & -1 \\ -3 & 3 & 3\end{array}\right]$
Substituting A^{-1}, in (5) we get $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}3 & -4 & -1 \\ 0 & 2 & -1 \\ -3 & 3 & 3\end{array}\right]\left[\begin{array}{c}1500 \\ 780 \\ 1110\end{array}\right]$
$=\frac{1}{3}\left[\begin{array}{c}3(1500)-4(780)-1110 \\ 0(1500)+2(780)-1110 \\ -3(1500)+3(780)+3(1110)\end{array}\right]$
$=\frac{1}{3}\left[\begin{array}{c}270 \\ 450 \\ 1170\end{array}\right]$
$=\left[\begin{array}{c}90 \\ 150 \\ 390\end{array}\right]$

Therefore, $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}90 \\ 150 \\ 390\end{array}\right]$, which the company produces 90 transistors, 150 resisters, and 390 computer chip.

