Answer to the Question \#88204 - Math - Discrete Mathematics

Question

Prove by mathematical induction that: Where " E " is the summation icon.
ni
E E j = 1/6n(n+1)(n+2)
$\mathrm{i}=1 \mathrm{j}=1$

Solution

We want to show by induction that for every positive integer $n \geq 1$ we have

$$
\sum_{i=1}^{n} \sum_{j=1}^{i} j=\frac{n(n+1)(n+2)}{6} .
$$

This identity holds for $n=1$ since $\sum_{i=1}^{1} \sum_{j=1}^{i} j=1=\frac{6}{6}=\frac{1(1+1)(1+2)}{6}$.
Suppose that for the positive integer $n=k \geq 1$ we have

$$
\sum_{i=1}^{k} \sum_{j=1}^{i} j=\frac{k(k+1)(k+2)}{6} .
$$

Now, for $n=k+1$ we have

$$
\sum_{i=1}^{k+1} \sum_{j=1}^{i} j=\sum_{i=1}^{k} \sum_{j=1}^{i} j+\sum_{j=1}^{k+1} j .
$$

By applying the induction hypothesis and noting the fact that $\sum_{i=1}^{r} i=\frac{r(r+1)}{2}$, we conclude that
$\sum_{i=1}^{k+1} \sum_{j=1}^{i} j=\frac{k(k+1)(k+2)}{6}+\frac{(k+1)(k+2)}{2}=\frac{(k+1)((k+1)+1)((k+1)+2)}{6}$.
Thus, it has been proved by induction that the identity holds for every integer
$n \geq 1$
Q.E.D.

