Solve the following system via Gaussian elimination method.

$$\begin{cases} a + 2b + 3c = 5\\ 3a - b + 2c = 8\\ 4a - 6b - 4c = -2 \end{cases}$$

The augmented matrix is

$$\begin{pmatrix} 1 & 2 & 3 & | & 5 \\ 3 & -1 & 2 & | & 8 \\ 4 & -6 & -4 & | & -2 \end{pmatrix}$$

We use elementary row operations to transform this matrix into a triangular one. We keep the first row and use it to produce all zeros elsewhere in the first column. We have

/1	2	3	5 \
0	7	7	7)
/0	14	16	22/

Next we keep the first and second row and try to have zeros in the second column. And so on. We have

	1 0 0	2 1 0	3 1 2	$\begin{pmatrix} 5\\1\\8 \end{pmatrix}$
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	2 1 0	0 0 1	 	$\begin{pmatrix} -7\\ -3\\ 4 \end{pmatrix}$
$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$	0 1 0	0 0 1	 	$\begin{pmatrix} -1\\ -3\\ 4 \end{pmatrix}$

So, a = -1, b = -3, c = 4

Answer: (D) -1.