Answer to Question \#87409 - Math - Trigonometry

Question

The following graph depicts which inverse trigonometric function?

$y=\operatorname{Arccos} x$$y=\operatorname{Arcsin} x$$y=\operatorname{Arctan} x$$y=\operatorname{Arcsec} x$

Solution

1. $y=\operatorname{Arccos}(x)$

Arccosine $(y=\operatorname{Arccos} x)$ is the function inverse to the $\operatorname{cosine}(x=\cos (y))$. It has the domain -1 $\leq x \leq 1$ and the range $0 \leq y \leq \pi$.
2. $y=\operatorname{Arcsin}(x)$

Arcsine $(y=\arcsin x)$ is the inverse function of the $\operatorname{sine}(x=\sin (y))$. It has the domain $-1 \leq x \leq 1$ and the range $-\pi / 2 \leq y \leq \pi / 2$.

$$
\text { 3. } \mathrm{y}=\operatorname{Arctan}(x)
$$

The arctangent $(y=\arctan x)$ is a function inverse to the tangent $(x=\tan (y))$, which has a domain $-\infty<x<+\infty$ and the range $-\pi / 2 \leq y \leq \pi / 2$.
4. $y=\operatorname{Arcsec}(x)$
$y=\operatorname{arcsec}(x)=\arccos (1 / \mathrm{x})$
Arc secant is discontinuous function defined on entire real axis except the $(-1,1)$, so its domain is $(-\infty,-1] \cup[1,+\infty)$.

Answer: $\mathrm{y}=\operatorname{Arcsin}(\mathrm{x})$.

Answer provided by https://www.AssignmentExpert.com

