## Answer to Question \#87224 - Math - Abstract Algebra

## Question

a) If $G$ is a group of order 40 , and $H$ and $K$ are its subgroups of orders 20 and 10 , then check whether or not $\mathrm{HK} \leq \mathrm{G}$. Further, show that $\mathrm{o}(\mathrm{H} \cap \mathrm{K}) \geq 5$.

Proof. Since $[G: H]=2, H$ is a normal subgroup of $G$ and hence $H K \leq G$. Since $o(H)=20$ and $o(K)=10$, we have $o(H K)=o(H) * o(K) / o(H \cap K)=200 / o(H \cap K)$. If $o(H \cap K)<$ 5 , then $o(H K)>40=o(G)$, which is not possible. Therefore, $o(H \cap K) \geq 5$.

## Question

b) Prove that $C^{*} / S \cong R^{+}$, where $S=\left\{z \in C^{*}| | z \mid=1\right\}, R^{+}=\{x \in R \mid x>0\}$ and $C^{*}=C \backslash\{0\}$.

Proof. Let $\mathrm{f}: \mathrm{C}^{*} \rightarrow \mathrm{R}^{+}$be defined by $\mathrm{f}(\mathrm{z})=|\mathrm{z}|$. Let $\mathrm{z}_{1}, \mathrm{z}_{2} \in \mathrm{C}^{*}$. Then, $f\left(z_{1} z_{2}\right)=\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|=f\left(z_{1}\right) f\left(z_{2}\right)$. Therefore, $f$ is a homomorphism. Let $S=\left\{z^{\prime} \in C^{*} \mid\right.$ $|z|=1\}$. Then $z_{1}=z_{2}$ in $C^{*} / S$ if and only if $z_{1} / z_{2} \in S$ if and only if $\left|z_{1} / z_{2}\right|=1$ if and only if $\left|z_{1}\right|=\left|z_{2}\right|$. That is $z_{1}=z_{2}$ in $C^{*} / S$ exactly when they have the same modulus. Thus, every element of G is equal in $\mathrm{C}^{*} / \mathrm{S}$ to precisely one nonzero real number. Also, Kernel $\mathrm{f}=$ $\left\{z \in C^{*}: f(z)=1\right\}=\left\{z \in C^{*}| | z \mid=1\right\}=S$. Thus, by First theorem of Homomorphism, $C^{*} / S \cong$ $\mathrm{R}^{+}$

## Question

c) What are the possible algebraic structures of a group of order 99?

Solution. Let G be a group of order 99. From the Sylow's theorem, there is only one 3 -Sylow subgroup and only one 11-Sylow subgroup. Let A be a 3 -Sylow subgroup, $B$ is an 11-Sylow subgroup. Hence both $A$ and $B$ are normal in $G$. Also, $A \cap B=\{e\}$ and since $|A B|=|A||B| /|A \cap B|=(9 \times 11) / 1=99=|G|$, we conclude that $G=A B$. Thus, $G$ $\cong A \times B$. Now, the only group of order 11 up to isomorphism is $Z_{11}$, and the only groups of order 9 are $Z_{9}$ and $Z_{3} \times Z_{3}$. Hence we get that $G \cong Z_{9} \times Z_{11}$ or $G=Z_{3} \times Z_{3} \times Z_{11}$.

Note : Solution for (c) uses the help from https://math.stackexchange.com/questions/3123910/how-do-vou-deduce-the-possible-algebraic-structures-of-a-group-from-its-order/3123918.

