

Answer on Question #86113 – Math – Other

Question

A company produces three products P1, P2 and P3, from three raw materials A, B and C. One unit of product P1 requires one unit of A, 3 units of B and 2 units of C. A unit of product P2 requires two units each of A and B and 3 units of C, while one unit of P3 needs 2 units of A, 6 units of B and 4 units of C. The company has a daily availability of 8 units of A, 12 units of B and 12 units of C.

It is further known that the profit per unit is Rs.3, Rs.2 and Rs.5 for P1, P2 and P3, respectively. How many units of product P1, product P2 and product P3 should the company manufacture to maximize the profit? Formulate this problem as a Linear programming problem.

Solution

Let X_1, X_2 and X_3 be the quantities of P1, P2 and P3, respectively.

The LP

$$\text{Maximize } p = 3X_1 + 2X_2 + 5X_3$$

Subject to

$$X_1 + 2X_2 + 2X_3 \leq 8$$

$$3X_1 + 2X_2 + 6X_3 \leq 12$$

$$2X_1 + 3X_2 + 4X_3 \leq 12$$

$$X_1, X_2, X_3 \geq 0$$

$$\text{Maximize } p = 3X_1 + 2X_2 + 5X_3$$

Subject to

$$X_1 + 2X_2 + 2X_3 + s_1 = 8$$

$$3X_1 + 2X_2 + 6X_3 + s_2 = 12$$

$$2X_1 + 3X_2 + 4X_3 + s_3 = 12$$

$$X_1, X_2, X_3, s_1, s_2, s_3 \geq 0$$

$$-3X_1 - 2X_2 - 5X_3 + p = 0$$

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	1	2	2	1	0	0	0	8
s_2	3	2	6	0	1	0	0	12
s_3	2	3	4	0	0	1	0	12
p	-3	-2	-5	0	0	0	1	0

Pivot is 6

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	1	2	2	1	0	0	0	8
s_2	1/2	1/3	1	0	1/6	0	0	2
s_3	2	3	4	0	0	1	0	12
p	-3	-2	-5	0	0	0	1	0

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	0	4/3	0	1	-1/3	0	0	4
s_2	1/2	1/3	1	0	1/6	0	0	2
s_3	0	5/3	0	0	-2/3	1	0	4
p	-1/2	-1/3	0	0	5/6	0	1	10

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	0	4/3	0	1	-1/3	0	0	4
X_3	1/2	1/3	1	0	1/6	0	0	2
s_3	0	5/3	0	0	-2/3	1	0	4
p	-1/2	-1/3	0	0	5/6	0	1	10

Pivot is 1/2

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	0	4/3	0	1	-1/3	0	0	4
X_1	1	2/3	2	0	1/3	0	0	4
s_3	0	5/3	0	0	-2/3	1	0	4
p	-1/2	-1/3	0	0	5/6	0	1	10

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	0	4/3	0	1	-1/3	0	0	4
X_1	1	2/3	2	0	1/3	0	0	4
s_3	0	5/3	0	0	-2/3	1	0	4
p	0	0	2	0	2	0	2	24

	X_1	X_2	X_3	s_1	s_2	s_3	p	
s_1	0	4/3	0	1	-1/3	0	0	4
X_1	1	2/3	2	0	1/3	0	0	4
s_3	0	5/3	0	0	-2/3	1	0	4
p	0	0	1	0	1	0	1	12

The maximum profit is 12:

$$X_1 = 4, X_2 = 0, X_3 = 0$$