The equation of an ellipse is: $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=c$ where: a, b - major and minor axes.
The equation of the hyperbola is: $\frac{\boldsymbol{x}^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=c$ where: a, b - major and minor axes.
The equation of the parabola is: $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$

So, if we have any equation: $\pm \boldsymbol{a} \boldsymbol{y}^{\boldsymbol{n}} \pm \boldsymbol{b} \boldsymbol{x}^{\boldsymbol{n}} \pm \cdots=\boldsymbol{c}$, that to identify it as parabola: one variable should be as $\boldsymbol{a y}$ (the first degree only), other as $\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}$ (the second degree and also can contain first degree).

If two variables is as: $\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}$ (the second degree), that to identify it as ellipse or hyperbola it is necessary to consider signs of variables factors: if it's equal (+ and +or- and -) - it is ellipse, if not hyperbola.

