Answer on Question \#85783 - Math - Quantitative Methods

Question

Perform three iterations of the inverse power method to obtain the smallest eigenvalue in magnitude of the matrix $[\{2,5\},\{3,6\}]$.

Take appropriate initial approximation to the eigenvector.

Solution

$$
A=\left(\begin{array}{ll}
2 & 5 \\
3 & 6
\end{array}\right)
$$

a non-zero vector \boldsymbol{x} is an eigenvector of \boldsymbol{A} if there exists a scalar $\boldsymbol{\lambda}$ such that

$$
A x=\lambda x \leftrightarrow x=A^{-1}(\lambda x) \leftrightarrow A^{-1} x=\frac{1}{\lambda} x
$$

the smallest eigenvalue of \boldsymbol{A} in magnitude is the largest eigenvalue of \boldsymbol{A}^{-1} and we can use power method on the \boldsymbol{A}^{-1} to compute its dominant eigenvalue:

$$
x^{k+1}=\frac{A^{-1} x^{k}}{\left\|A^{-1} x^{k}\right\|_{\infty}}, \quad x^{k}-k^{t h} \text { approximation to the dominant eigenvector }
$$

to speed up the convergence of the method, we choose the eigenvector as the initial approximation:

$$
\begin{gathered}
x^{0}=\binom{-2.12}{1}, \quad A^{-1}=\left(\begin{array}{cc}
-2 & 5 / 3 \\
1 & -2 / 3
\end{array}\right) \\
A^{-1} x^{0}=\left(\begin{array}{cc}
-2 & 5 / 3 \\
1 & -2 / 3
\end{array}\right)\binom{-2.12}{1}=\binom{5.907}{-2.787}, \quad x^{1}=\binom{1}{-0.472}, \quad\left|\lambda^{1}\right|=0.169 \\
A^{-1} x^{1}=\left(\begin{array}{cc}
-2 & 5 / 3 \\
1 & -2 / 3
\end{array}\right)\binom{1}{-0.472}=\binom{-2.786}{1.315}, \quad x^{2}=\binom{-1}{0.472}, \quad\left|\lambda^{2}\right|=0.359 \\
A^{-1} x^{2}=\left(\begin{array}{cc}
-2 & 5 / 3 \\
1 & -2 / 3
\end{array}\right)\binom{-1}{0.472}=\binom{2.786}{-1.314}, \quad x^{3}=\binom{1}{-0.472}, \quad\left|\lambda^{3}\right|=0.359
\end{gathered}
$$

the smallest eigenvalue of \boldsymbol{A} in magnitude is 0.359 .

