
Answer to Question #85700 – Math – Real Analysis 

Function is given as ( )
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The value of function is zero when x is zero for any value of n including infinity 

Which shows that the given function is constant value function? 

Lets takes first derivatives of function 
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In order to find out the critical point of the function we need to equate first derivative of function 

equal to zero 
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This gives us 
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The value of function at this point is  
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But at the end point  

1=x , the functions have value of  
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In the set  1,1− , maxima and minima occur either at the end points or at the critical point. 

Thus, in the interval  1,1− , the maximum value will be ½ for all value of n. so, 



Limit n tends to infinity for sup  0
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So, fn does not converges uniformly to f(x) on the  1,1− . 
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