Answer to Question \#85700 - Math - Real Analysis

Function is given as $f_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$
The value of function is zero when x is zero for any value of n including infinity
Which shows that the given function is constant value function?
Lets takes first derivatives of function

$$
\begin{aligned}
& f_{n}^{\prime}(x)=\frac{(n)\left(1+n^{2} x^{2}\right)-n x\left(2 n^{2} x\right)}{\left(1+n^{2} x^{2}\right)^{2}} \\
& f_{n}^{\prime}(x)=\frac{n-n^{3} x^{2}}{\left(1+n^{2} x^{2}\right)^{2}}
\end{aligned}
$$

In order to find out the critical point of the function we need to equate first derivative of function equal to zero

$$
0=\frac{n-n^{3} x^{2}}{\left(1+n^{2} x^{2}\right)^{2}}
$$

This gives us

$$
x= \pm \frac{1}{n}
$$

The value of function at this point is
$f_{n}\left(\pm \frac{1}{n}\right)= \pm \frac{1}{2}$
But at the end point $x= \pm 1$, the functions have value of $f_{n}(\pm 1)=\frac{ \pm 1}{1+n^{2}}$

In the set $[-1,1]$, maxima and minima occur either at the end points or at the critical point.
Thus, in the interval $[-1,1]$, the maximum value will be $1 / 2$ for all value of n. so,

Limit n tends to infinity for $\sup \left\{\left\langle f_{n}(x)-f(x)\right\rangle\langle x \in[-1,1]\}=\frac{1}{2} \neq 0\right.$
So, fn does not converges uniformly to $\mathrm{f}(\mathrm{x})$ on the $[-1,1]$.

